CRISPR-Gold Has Potential To Edit Brain Genes Interview with:

Niren Murthy PhD Professor of Bioengineering University of California at Berkeley

Prof. Murthy

Niren Murthy PhD
Professor of Bioengineering
University of California at Berkeley What is the background for this study? What are the main findings?

Response: In this paper we delivered Cas9 RNP in the brain using a delivery vehicle termed CRISPR-Gold.  We were able to knock out the mGluR5 gene and rescue mice from autism using CRISPR-Gold.  The background here is that there is a great need for safe and effective CRISPR delivery vehicles, and that brain gene editing has great therapeutic potential.  This paper demonstrates for the first time that non-viral delivery of Cas9 RNP into the brain can have therapeutic effects. What should clinicians and patients take away from your report?

Response: Brain gene editing has tremendous therapeutic potential, and can be achieved with non-viral Cas9 RNP delivery What recommendations do you have for future research as a result of this study?

Response:   We need to be able to edit the brains of large animals.  The particles will need to be modified for this, we are currently working on this.  GenEdit, a start-up company spun out from our lab, is also working on this.

Disclosures: I was a co-founder of GenEdit, but now have no equity in GenEdit, there should be no conflict of interest Thank you for your contribution to the community.


Bumwhee Lee, Kunwoo Lee, Shree Panda, Rodrigo Gonzales-Rojas, Anthony Chong, Vladislav Bugay, Hyo Min Park, Robert Brenner, Niren Murthy, Hye Young Lee. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature Biomedical Engineering, 2018; DOI: 10.1038/s41551-018-0252-8

Note: Content is Not intended as medical advice. Please consult your health care provider regarding your specific medical condition and questions.