Author Interviews, Neurological Disorders, Personalized Medicine / 19.06.2020
Hope for Rare Neuropathy By Targeting Specific Autoantibodies
MedicalResearch.com Interview with:
Pascal Hänggi, PhD
Chief Scientific Officer
Polyneuron Pharmaceuticals
MedicalResearch.com: What is the background for this study?
Response: Anti-MAG neuropathy is a rare form of acquired demyelinating neuropathy. The disease onset normally presents after the age of 50 years and is 2.7 times more frequent in men than in women, with a prevalence of about 1 in 100,000. It is caused by the production of monoclonal anti-MAG IgM antibodies that recognize the HNK-1 epitope. The myelin-associated glycoprotein MAG is a mediator for the formation and maintenance of the myelin sheaths. There is strong evidence that the binding and deposition of anti-MAG IgM autoantibodies on myelin sheath is responsible for the demyelination, which clinically manifests itself as a peripheral neuropathy affecting primarily sensory nerves. However, the causes and the exact mechanisms behind the expansion of anti-MAG IgM producing B-cell and plasma cell clones are not fully understood.
Most off-label treatments aim to reduce pathogenic autoantibody titers by depleting autoantibody-producing B cell clones which interfere with antibody-effector mechanisms, or physically remove autoantibodies from the circulation. Most frequently, the anti-CD20 monoclonal antibody rituximab is used to treat anti-MAG neuropathy patients. However, all of these treatment options often lack of selectivity, efficiency, or can induce severe adverse effects in some patients.
Polyneuron has designed PN-1007 to highly selectively target the IgM autoantibodies that cause anti-MAG neuropathy. PN-1007 is a glycopolymer that mimics the natural HNK-1 carbohydrate epitope found on myelin of peripheral nerves and binds to the circulating disease-causing antibodies. By eliminating these pathogenic antibodies, PN-1007 may protect the integrity of the neuronal myelin sheaths of anti-MAG neuropathy patients. (more…)