ASCO, Author Interviews, Brain Cancer - Brain Tumors, Cancer Research, Immunotherapy / 04.06.2016

MedicalResearch.com Interview with: Wayne L. Furman, MD Department of Oncology Jude Children's Research Hospital Memphis, TN 38105-3678 MedicalResearch.com: What is the background for this study? What are the main findings? Dr. Furman: Despite improvement in 2-yr EFS from 46% to 66% with the inclusion of dinutuximab, a monoclonal antibody that recognizes a glycoprotein on neuroblasts called ‘GD2’ (disialoganglioside), more than one-third of children with high-risk neuroblastoma still are not cured. Therefore novel therapeutic approaches are needed for this subset of patients. The clinical evaluation of various anti-GD 2 monoclonal antibodies in children with neuroblastoma has been exclusively focused on treatment of patients after recovery from consolidation, in a state of ‘minimal residual disease’. This is because traditionally chemotherapy has been thought to be too immunosuppressive to combine with monoclonal antibodies. However recent studies suggest, even in the setting of “bulky” solid tumors, the combination of chemotherapy with monoclonal antibodies can enhance the effectiveness of the antibodies. First, chemotherapy can increase the efficacy of antibodies by depleting cells of the immune system that suppress immune function. Also chemotherapy-induced tumor cell death can trigger tumor antigen release, uptake by antigen processing cells and an enhanced antitumor immune response. There is also data that anti-GD2 monoclonal antibodies can suppress tumor cell growth independent of immune system involvement. Furthermore anti-GD2 monoclonal antibodies and chemotherapy have non-overlapping toxicities. All of these reasons were good reasons to evaluate the addition of a novel anti-GD2 monoclonal antibody, called hu14.18K322A, to chemotherapy, outside the setting of minimal residual disease, in children with newly diagnosed children with high-risk neuroblastoma. (more…)