MedicalResearch.com Interview with:
Jane Tarry-Adkins
BSc Biochemistry Research Assistant
University of Cambridge · Institute of Metabolic Science
Medical Research: What is the background for this study? What are the main findings?
Response: From epidemiological and animal studies, it has been known for several years that a suboptimal in utero environment that causes low birth weight combined with accelerated postnatal growth is strongly linked to increased risk of cardiovascular disease (
CVD). However underlying molecular mechanisms for this phenomenon, known as ‘developmental programming’ are still unknown.
In this study, we used a rat model where animals are born small because their mother ate a low protein diet during pregnancy but grow quickly during lactation when they are suckled by a control diet fed mum. These ‘recuperated’ rats displayed indices of accelerated aortic cellular aging and damage which was associated with a deficit in coenzyme Q (CoQ); (the most abundant endogenous antioxidant in the body), compared to offspring of a normal birth-weight. When these ‘recuperated’ offspring were supplemented with a clinically relevant dose of coenzyme Q, this corrected these markers of aortic cellular aging and aortic damage. Importantly, measurement of CoQ in white blood cells (WBCs) a clinically accessible tissue demonstrated a
coenzyme Q deficit in these ‘recuperated’ offspring. Importantly, this strongly correlated with aortic CoQ levels. Furthermore, we also showed a highly significant relationship between CoQ levels and aortic telomere length in WBCs, suggesting that low WBC CoQ levels can predict short aortic telomeres, and therefore susceptibility to aortic disease.
(more…)