Parkinson’s Disease Associated With Altered Intestinal Bacteria

Filip Scheperjans MD Department of Neurology Helsinki University Central Hospital Department of Neurological Sciences University of Helsinki, Helsinki, FinlandMedicalResearch.com Interview with:
Filip Scheperjans MD

Department of Neurology
Helsinki University Central Hospital
Department of Neurological Sciences
University of Helsinki, Helsinki, Finland

Medical Research: What is the background for this study? What are the main findings?

Dr. Scheperjans: In Parkinson’s disease (PD), the first neurodegenerative changes are seen in the olfactory bulb and enteric nervous system. Correspondingly, most Parkinson’s disease patients suffer from hyposmia and gastrointestinal symptoms, frequently years before motor symptoms evolve. Therefore, it has been suggested that an environmental factor acting through the nose or gut, could be involved in Parkinson’s disease. Interestingly, those two habitats are where our body gets mostly exposed to environmental agents, including microbes. Previous attempts to identify microbes related to Parkinson’s disease pointed to Helicobacter pylori and small intestinal bacterial overgrowth, but in the end had been somewhat inconclusive. But there possibly was a signal. We saw next generation sequencing approaches as a new opportunity to revisit the microbe theory in PD. Studies of gut microbiome composition in neurodegenerative disease have not been published before, although alterations in gut microbiota have been demonstrated in many other diseases and gut microbiota are in close interaction with the central nervous system.

The fecal microbiome of Parkinson’s disease subjects clearly differed from that of matched controls and this difference was independent of the potential confounders that we assessed. The most significant finding was that the abundance of bacteria from the Prevotellaceae family was reduced by 78% in Parkinson’s disease patients. A low abundance of Prevotellaceae was 86% sensitive for PD, but rather unspecific. However, a combination of 4 bacterial families increased specificity for PD to 90%. So microbiome analysis performed quite well in distinguishing Parkinson’s disease patients from control subjects. Another interesting finding was that, within the Parkinson’s disease group, abundance of Enterobacteriaceae bacteria was related to the motor symptoms of patients. They were positively associated with the severity of postural instability and gait difficulty.
Continue reading