‘Liver-on-a-Chip’ Technology Can Accurately Mimic Hepatitis B Infection

MedicalResearch.com Interview with:

Primary hepatocytes grown in 3D microfluidic “liver-on-a-chip” platform following infection with hepatitis B virus. Credit: Marcus Dorner/Imperial College London

Primary hepatocytes grown in 3D microfluidic “liver-on-a-chip” platform following infection with hepatitis B virus. Credit: Marcus Dorner/Imperial College London

Marcus Dorner, PhD
Non-Clinical Senior Lecturer in Immunology
Wellcome Trust Investigator
Imperial College London
Department of Medicine, Section of Virology
School of Medicine
London United Kingdom 

MedicalResearch.com: What is the background for this study? What are the main findings?

Response:  Hepatitis B virus (HBV) infection globally affects over 250 million people and is currently not curable. This infection can lead to liver cirrhosis and liver cancer and is among the leading causes for liver transplantation. Unfortunately, HBV is among the most difficult viruses to study in the laboratory, since model systems are not very good at recapitulating what happens in infected humans.

We have just described the first model to effectively change this. Using an artificial “Liver-on-a-Chip”, we have developed a tool, which can potentially revolutionise how we study viral infections by merging the study of viruses with tissue engineering. This model is over 10,000-fold more susceptible to HBV infection and accurately mimics, what happens in an infected patient. This can now be utilised to develop novel and potentially curative therapies, which would benefit millions of people currently living with chronic HBV infection.  Continue reading