MedicalResearch.com Interview
Professor Nick Franks
Professor of Biophysics and Anaesthetics
Professor William Wisden,
Chair in Molecular Neuroscience
Department of Life sciences
Wolfson Laboratories, Imperial College, South Kensington London
Medical Research: What is the background for this study? What are the main findings?
Profs. Franks and Wisden: We were interested in finding out how a particular type of sedative drug, dexmedetomidine, works in the brain. This drug is increasingly used during intensive care for sedation of patients, but unlike other powerful sedatives, it induces a state whereby the patient can be temporarily woken up. This is a highly useful property because it means patients can be both sedated and responsive during procedures. The drugged sedative state induced by dexmedetomidine struck us as being highly similar to the deep sleep that we all need to have if we have been extensively sleep deprived. If people and animals are kept awake for extended periods of time, they have to sleep. Most people know this from common experience - catching up on lost sleep. But how and why we need to sleep after sleep deprivation is not known. We found that dexmedetomidine-induced sedation and this recovery sleep used the same brain circuits, in a tiny area at the base of the brain called the preoptic hypothalamus. To do this we used a new genetic technique in mice that allowed us to mark or "tag" which neurons in the mouse’s brain were active during sedation or recovery sleep after sleep deprivation. The beauty of this technique is that we could then specifically reactivate these same neurons several days later with a special molecule that only binds to the tagged neurons. This reactivation caused the mice to go into a deep sleep. We concluded that the sedative drug dexmedetomidine copies or hijacks the mechanism used by the brain to respond to sleep deprivation and trigger deep sleep.
(more…)
MedicalResearch.com Interview with:Sophie Billioti de Gage PharmD
University of Bordeaux Segalen
FranceMedical Research: What are the main findings of the study?Answer: The risk of Alzheimer’s disease was found increased by 43-51% in persons (>65) having initiated a treatment with benzodiazepines in the past (>5 years before). Risk increased with the length of exposure and when long acting benzodiazepines were used.
(more…)
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.AcceptRejectRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.