Novel Brain Imaging May Detect Preclinical Alzheimer’s Disease

MedicalResearch.com Interview with:
Dr. Sanja Josef Golubic, dr. sc

Department of Physics, Faculty of Science
University of Zagreb, Croatia

MedicalResearch.com: What is the background for this study?

Response: Our study was aimed to search the topological biomarker of Alzheimer’s disease. A recent evidences suggest that the decades long progression of brain degeneration that is irreversible by the stage of symptomatic Alzheimer’s disease, may account for failures to develop successful disease-modifying therapies. Currently, there is a pressing worldwide search for a marker of very early, possibly reversible, pathological changes related to Alzheimer’s disease in still cognitively intact individuals, that could provide a critical opportunity for evolving of efficient therapeutic interventions.

Three years ago we reported the discovery of the novel, fast brain pathway specialized for rapid processing of the simple tones. We named it gating loop. Gating loop directly links auditory brain areas to prefrontal brain area. We have also noticed the high sensitivity of the gating loop processing on AD pathology. It was inspiration to focus our Alzheimer’s disease biomarker search in the direction of prefrontal brain activation during listening of simple tones.

Continue reading

Brain Imaging Patterns Moving Closer To Identifying Schizophrenia on Functional MRI

MedicalResearch.com Interview with:

Irina Rish PhD IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Dr. Rish

Irina Rish PhD
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598 

MedicalResearch.com: What is the background for this study? What are the main findings?

Response: Schizophrenia is a chronic and severe psychiatric disorder that affects roughly about 1% of population. Although it is not as common as other mental disorders, such as depression, anxiety, and attention deficit disorder (ADD), and so on, schizophrenia  is perhaps one of  the most debilitating psychiatric disorders,  preventing people from normal  functioning in daily life. It is characterized primarily by a range of psychotic symptoms, including hallucinations (false auditory, visual or tactile perceptions detached from reality), as well as delusions, disorganized thoughts, speech and behavior, and multiple other symptoms including difficulty showing (and recognizing) emotions, poor executive functioning, inattentiveness, problems with working memory,  and so one. Overall, schizophrenia has a devastating impact not only on patients and their families, but on the economy, as it was estimated to cost the US about 2% off  gross national product in treatment costs, missed work, etc.
Thus, taking steps towards better understanding of the disease can potentially lead to more accurate early diagnosis and better treatments.

In this work, the objective was to identify “statistical biomarkers’ of schizophrenia from brain imaging data (specifically, functional MRI), i.e. brain activity patterns that would be capable of accurately discriminating between schizophrenic patients and controls, and reproducible (stable) across multiple datasets. The focus on both predictive accuracy (generalization to previously unseen subjects) as well as on stability (reproducibility) across multiple datsets differentiates our work from majority of similar studies in neuroimaging field that tend to focus only on statistically significant differences between such patterns on a fixed dataset, and may not reliably generalize to new data.

Our prior work on neuroimaging-based analysis of schizoprenia http://journals.plos.org/plosone/article/related?id=10.1371/journal.pone.0050625, as well as other research in the field, suggest that disrupted functional connectivity can be a much more informative source of discriminative patterns than local changes in brain activations, since schizophrenia is well known to be a “network disease”, rather than a localized one.

Continue reading

Cerebral Perfusion Is Perturbed by Preterm Birth and Brain Injury

MedicalResearch.com Interview with:
Eman S. Mahdi, MD, MBChB
Pediatric Radiology Fellow

Catherine Limperopoulos, PhD Director, Developing Brain Research Laboratory Co-Director of Research, Division of Neonatology Diagnostic Imaging and Radiology Children’s National Health System Washington, DC

Dr. Catherine Limperopoulos

Catherine Limperopoulos, PhD
Director, Developing Brain Research Laboratory
Co-Director of Research, Division of Neonatology
Diagnostic Imaging and Radiology
Children’s National Health System
Washington, DC

MedicalResearch.com: What is the background for this study? What are the main findings?

Response: Premature birth is a major public health concern in the United States affecting 1 in 10 infants each year. Prematurity-related brain injury is very common and associated with a high prevalence of brain injury and accompanying lifelong neurodevelopmental morbidities.

Early disturbances in systemic and cerebral hemodynamics are thought to mediate prematurity-related brain injury. The extent to which cerebral blood flow (CBF) is disturbed in preterm birth is poorly understood, in large part because of the lack of monitoring techniques that can directly and non-invasively measure cerebral blood flow.

We report for the first time early disturbances in global and regional cerebral blood flow in preterm infants following brain injury on conventional magnetic resonance imaging (MRI) over the third trimester of ex-uterine life using arterial spin labelling images. In terms of regional differences, we saw a marked decrease in blood flow to the thalamus and the pons, regions known to be metabolically active during this time.

Continue reading

Neuroimaging Detects Chemical Disturbances in Stuttering

MedicalResearch.com Interview with:
Joseph O’Neill, PhD
Division of Child and Adolescent Psychiatry
University of California–Los Angeles Semel Institute for Neuroscience
Los Angeles

MedicalResearch.com: What is the background for this study? What are the main findings?

Response: Stuttering seriously diminishes quality of life. While many children who stutter eventually grow out of it, stuttering does persist into adulthood in many others, despite treatment. Like earlier investigators, we are using neuroimaging to explore possible brain bases of stuttering, aiming, eventually, to improve prognosis. What’s novel is that our study deploy neuroimaging modalities– arterial spin labelling and, in this paper, magnetic resonance spectroscopy (MRS)– not previously employed in stuttering. MRS offers prospects of detecting possible neurochemical disturbances in stuttering.

The MRS results showed differences in neurometabolite– brain chemicals– levels between people who stutter (adults and children) and those who don’t in many brain regions where other neuroimaging has also observed effects of stuttering. In particular, MRS effects were apparent in brain circuits where our recent fMRI work detected signs of stuttering, circuits subserving self-regulation of speech production, attention and emotion. This reinforces the idea that stuttering has to do with how the brain manages its own activity along multiple dimensions: motivation, allocation of resources, and behavioral output.

Continue reading