Author Interviews, Cognitive Issues, Genetic Research, Heart Disease / 23.10.2018

MedicalResearch.com Interview with: "Pregnancy 1" by operalynn is licensed under CC BY 2.0Heather Boyd, Ph.D. Senior researcher Department of Epidemiology Research Copenhagen Denmark MedicalResearch.com: What is the background for this study? What are the main findings? Response: We have known for a while that women who have had preeclampsia report different types of cognitive impairment (difficulties with short-term memory, attention deficits) in the years and decades after their pregnancies, and there are a few imaging studies suggesting that these women may have more white matter lesions in the brain and more signs of brain atrophy than women with uncomplicated pregnancies. We also know that women who have had preeclampsia are at increased risk of cardiovascular disease in the years and decades after delivery. Taken together, it was not a great leap to hypothesize that women with a history of preeclampsia might also be at increased risk of dementia later in life. However, the existing epidemiological data were unconvincing, possibly because it takes a great deal of power (a very large study population) to study links between two conditions that often occur decades apart. (more…)
Author Interviews, BMJ, Genetic Research, Pain Research, Pediatrics / 17.10.2018

MedicalResearch.com Interview with: "DNA model" by Caroline Davis2010 is licensed under CC BY 2.0Hakon Hakonarson, MD, PhD Corresponding Author Xiao Chang, PhD Lead Author The Center for Applied Genomics Children’s Hospital Philadelphia PhiladelphiaPennsylvania MedicalResearch.com: What is the background for this study? What are the main findings? Response: Migraine is a genetic disorder characterized by recurrent and intense headaches often accompanied by visual disturbances. Genome-wide association studies (GWASs) are a powerful hypothesis-free tool for investigating the genetic architecture of human disease. Currently, multiple GWASs have been conducted on European adults with migraine that have successfully identified several migraine susceptibility genes involved in neuronal and vascular functions. Considering the prevalence of migraines varies across ethnicities, the genetic risk factors may be different in patients of African ancestries and European ancestries. In addition, if migraine presents at an early age (childhood), it may reflect elevated biological predisposition from genetic factors or increased susceptibility to environmental risk factors. We performed the first GWAS to investigate the susceptibility genes associated with migraine in African-American children. The main out come was that common variants at the 5q33.1 locus in the human genome are associated with migraine risk in African-American children. The genetic underpinnings at this locus responsible for this finding are less relevant in patients of European ancestry.  (more…)
Author Interviews, Cannabis, Genetic Research, JAMA, Mental Health Research / 17.10.2018

MedicalResearch.com Interview with: Dr. Nicole Karcher, PhD Post-doctoral scholar with the NIMH Training in Clinical Sciences fellowship Department of Psychiatry Washington University School of Medicine   MedicalResearch.com: What is the background for this study? What are the main findings? Response: For over fifteen years, researchers have debated the role that cannabis use plays in the development of both psychotic disorders as well as subthreshold psychotic symptoms, such as psychotic-like experiences (PLEs). There is still a lack of consensus regarding the nature of the association between cannabis use and psychosis risk, with some research finding evidence for genetic overlap, while other research finds evidence for potentially causal pathways. The current study examined data from twins and siblings from two different samples, the U.S.-based Human Connectome Project and the Australian Twin Registry, with a total of 4,674 participants. Overall, psychotic-like experiences were associated with three separate cannabis use variables [frequent (≥100 times) use, a Cannabis Use Disorder diagnosis, and current cannabis use]. Furthermore, the current research found evidence for both shared genetic and individual-specific contributions to the association between PLEs and these three cannabis use variables. More specifically, while the association between cannabis use and psychotic-like experiences was largely attributable to shared genetic factors, cannabis users were more likely to endorse PLEs in comparison to the relative who used cannabis less.  (more…)
Author Interviews, Genetic Research, PLoS, Smoking, Tobacco Research / 17.10.2018

MedicalResearch.com Interview with: "Photo booth: The Smoking Man" by simpleinsomnia is licensed under CC BY 2.0Pradeep G. Bhide, Ph.D. Professor | Jim and Betty Ann Rodgers Eminent Scholar Chair of Developmental Neuroscience Director, Center for Brain Repair Department of Biomedical Sciences Florida State University College of Medicine Tallahassee, FL MedicalResearch.com: What is the background for this study? What are the main findings? Response: Until now, much attention had been focused on the adverse effects of cigarette smoking by pregnant women on their children’s cognitive development. Some reports suggested that cigarette smoking during pregnancy can produce harmful effects in multiple generations of descendants (transgenerational effects). Not much had been known about the effects of paternal smoking, although more men smoke cigarettes than women. Our study shows that paternal nicotine exposure can be deleterious to the offspring in multiple generations. That is, cognitive function may be compromised in children and grandchildren of a nicotine-exposed male. Of course, our study was done in mice and not men.  However, since studies done in mice on maternal nicotine exposure produced results consistent with studies done in women and children, we believe that he findings from our present study likely can be extrapolated to humans.  (more…)
Author Interviews, Cancer Research, Colon Cancer, Genetic Research, University Texas / 10.10.2018

MedicalResearch.com Interview with: Mohammad Bilal, MD University of Texas Medical Branch MedicalResearch.com: What is the background for this study? Response: Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer among adults in the United States and the second leading cause of cancer related deaths. Recent studies have shown an increasing incidence of CRC in younger patients. This has led to increasing interests in identifying patient populations who might be at increased risk of developing CRC. The U.S. Multi-Society Task Force of Colorectal Cancer (MSTF) recommends that CRC screening should begin at age 50 in average-risk persons. However, recently the American Cancer Society (ACS) have published recommendations to begin CRC screening at age 45 years in average risk patient population. These recommendations were primarily based of modeling studies since there is little outcomes data in younger age groups in regards to prevention and detection of CRC. Despite these new recommendations from the ACS, there is limited direct evidence to support CRC screening at a younger age. In our study, we have evaluated the predictors of increased prevalence of adenomas in the 40 to 49-year-old individuals undergoing colonoscopy.  (more…)
Author Interviews, Breast Cancer, Genetic Research / 10.10.2018

MedicalResearch.com Interview with: "JFK Plaza/ Breast Cancer Awareness" by nakashi is licensed under CC BY 2.0Univ.- Prof. Dr. Wolfgang Schreiner Section Biosimulation and Bioinformatics Center for Medical Statistics, Informatics, and Intelligent Systems Medical University of Vienna General Hospital WIEN / AUSTRIA MedicalResearch.com: What is the background for this study? What are the main findings? Response: The choice of correct individualized therapy for breast cancer depends on correct diagnosis: receptors for estrogen, progesterone and HER2 are determined routinely. However 5-10% of these routine diagnostics are inaccurate and may entail suboptimal therapy. We have paved the way for additional diagnostics from gene expression data so as to increase precision of diagnostics. (more…)
Author Interviews, Columbia, Environmental Risks, Genetic Research, Ophthalmology, PLoS / 09.10.2018

MedicalResearch.com Interview with: Andrei V. Tkatchenko, M.D., Ph.D. Associate Professor Columbia University Medical Center Edward S. Harkness Eye Institute New York, NY 10032 MedicalResearch.com: What is the background for this study? What are the main findings? Response: Clear distance vision is rapidly becoming a rare privilege around the world, especially in Asia, due to increasing prevalence of myopia. Although much effort has been directed towards elucidating the mechanisms underlying refractive eye development and myopia, treatment options for myopia are mostly limited to optical correction, which does not prevent progression of myopia or pathological blinding complications often associated with the disease. During early childhood development, the axial length of the eye normally grows to match its optical power in a process called emmetropization, producing focused images on the retina. However, very often environmental and genetic factors lead to a mismatch between the optical power of the eye and its axial length resulting in the development of myopia if eyes grow too long for their optical power. Experimental studies in many animal species suggest that emmetropization is regulated by optical defocus. The eye can compensate for imposed negative and positive optical defocus by increasing or decreasing its growth rate, respectively. However, the molecular mechanisms underlying emmetropization are poorly understood which prevents development of anti-myopia drugs. (more…)
Author Interviews, Genetic Research, Pediatrics / 28.09.2018

MedicalResearch.com Interview with: Barry M. Lester, PhD Center for the Study of Children at Risk Warren Alpert Medical School, Brown University Women and Infants Hospital of Rhode Island Providence, Rhode Island;  MedicalResearch.com: What is the background for this study? What are the main findings? Response: We know from rodent studies that maternal care or nurturing behavior can change the rat pups physiologic response to stress. More nurturing behavior makes it easier for rat pups to relax after stress. Not only that, these changes are permanent, they last into adulthood and there is evidence that these changes can be passed on to the next generation. With animal studies you can unlock the mechanism for this in ways that you can’t do with humans and we know from the rodent studies that the mechanism for these changes has to do with changes in gene activity. Nurturing behavior controls a specific gene that regulates the infant’s physiological response to stress. In other words, we are looking at maternal behavioral programming of a gene that can make, in our case, a human infant less physiologically reactive to stress. The physiological reactivity to stress that we studied was the production of the stress hormone cortisol. Cortisol is part of the body’s flight or fight reaction, the body’s major response to stress and too much or too little cortisol can be harmful and is related to a wide range of mental and physical health disorders in children and adults. The concerns about separating immigrant children from their parents that we read about every day in the paper are based on this same physiological system, where brain structures that control cortisol production are damaged by the stress of separation.  (more…)
Author Interviews, Cancer Research, Genetic Research, JAMA, Yale / 22.09.2018

MedicalResearch.com Interview with: Michael F. Murray, MD, FACMG, FACP Director for Clinical Operations in the Center for Genomic Health Yale School of Medicine MedicalResearch.com: What is the background for this study? Response: Population screening for the cancer risk associated with the BRCA1 and BRCA2 genes has been suggested by some.  We screened a cohort of about 50,000 adult patient volunteers at Geisinger Health System in Pennsylvania for this risk.  (more…)
Aging, Alzheimer's - Dementia, Author Interviews, CMAJ, Genetic Research / 06.09.2018

MedicalResearch.com Interview with: Ruth Frikke-Schmidt, Professor, Chief Physician, MD, DMSc, PhD Department of Clinical Biochemistry Rigshospitalet, Blegdamsvej & Deputy Head Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen MedicalResearch.com: What is the background for this study?   Response: Alzheimer’s disease and other forms of dementia are devastating, neurodegenerative disorders affecting more than 47 million people in 2015, a number projected to triple by 2050 (1,2). Available curative treatments are lacking, and no useful risk prediction tools exist. The potential for prevention is however substantial, emphasized by the recently observed incidence decline in Western societies, likely caused by improved treatment and prevention of vascular risk factors (1,3,4). Population growth and aging, will however triple dementia prevalence by 2050, if no action is taken. Acting now with ambitious preventive interventions, delaying onset of disease by five years, is estimated to halve the prevalence globally (1,5). Despite important preventive efforts over the last decades - resulting in decreased smoking, lower blood pressure and lower cholesterol levels in the general population - physical inactivity, overweight, and diabetes remain threats for our health care system, and in particular for cardiovascular disease and dementia. Intensifying preventive efforts in general is thus of crucial importance, and especially for those patients at highest risk who most likely will benefit the most from early and targeted prevention. Risk stratification and specific treatment goals according to the estimated absolute 10-year risk, has been implemented in cardiovascular disease for years (6,7). There is an un-met need for similar strategies in dementia, underscored by the publication of several randomized multicomponent trials that seem to improve or maintain brain function in at-risk elderly people from the general population (8-10) (more…)
Aging, Author Interviews, Genetic Research, JAMA / 27.08.2018

MedicalResearch.com Interview with: Yi Zeng, Ph.D.| Professor, Center for Study of Aging and Human Development and Geriatrics Division, School of Medicine, Duke University Professor, National School of Development, Chief Scientist of Raissun Institute for Advanced Studies, Peking University Distinguished Research Scholar, Max Planck Institute for Demographic Research Foreign member of the Royal Netherlands Academy of Arts and Science MedicalResearch.com: What is the background for this study? What are the main findings? Response: Sex differences in genetic associations with human longevity remain largely unknown; investigations on this topic are important for individualized healthcare. (more…)
Author Interviews, Breast Cancer, Cancer Research, Genetic Research, JAMA, Ovarian Cancer / 21.08.2018

MedicalResearch.com Interview with: Ambry GeneticsShuwei Li, PhD Principal Statistical Geneticist Ambry Genetics MedicalResearch.com: What is the background for this study? What are the main findings? Response: Breast cancer is the most commonly diagnosed cancer, while ovarian cancer is the fifth leading cause of death due to cancer, in US women. Since the discovery of BRCA1 and BRCA2, multiple genes have been reported as risk factors; however, it is still unclear whether the known findings represent the complete genetic landscape of breast and ovarian cancers. Our team performed exome sequencing on more than 10,000 breast and/or ovarian cancer patients and nearly 4,000 controls. We observed increased risk of breast cancer associated with PALB2, ATM, CHEK2 and MSH6 genes, and increased risk of ovarian cancer associated with MSH6, RAD51C, TP53 and ATM genes.   (more…)
Aging, Author Interviews, Genetic Research / 15.08.2018

MedicalResearch.com Interview with: Aladdin H. Shadyab, PhD  MS, MPH, CPH Department of Family Medicine and Public Health University of California, San Diego twitter.com/TheDrAladdin MedicalResearch.com: What is the background for this study? What are the main findings? Response: Previous studies have shown that offspring of long-lived parents are not only likely to live longer but to also avoid major chronic diseases (e.g., coronary heart disease), have fewer chronic disease risk factors, and to have better cognitive and physical function in late life. However, few studies have examined parental longevity in relation to an overall measure of successful aging that included reaching old age free of both major diseases and disabilities. The objective of our study was to determine if parental longevity predicted healthy aging, defined as survival to age 90 without any major age-related diseases (coronary heart disease, stroke, diabetes, cancer, or hip fracture) or physical limitations. The participants of our study were from the Women's Health Initiative, a large, longitudinal study among postmenopausal women from the United States. We observed that women whose mothers survived to at least age 90 years were 25% more likely to achieve healthy aging. We also observed that women whose fathers only lived to age 90 did not have increased likelihood of healthy aging. However, women whose mother and father both lived to age 90 were the most likely to achieve healthy aging. (more…)
Author Interviews, Genetic Research, Mental Health Research / 14.08.2018

MedicalResearch.com Interview with: Prof. Carmen Sandi Director, Brain Mind Institute Laboratory of Behavioral Genetics Brain Mind Institute Ecole Polytechnique Federale de Lausanne Lausanne, Switzerland  MedicalResearch.com: What is the background for this study? What are the main findings? Response: We are interested in understanding how the brain regulates social behaviors and aggression, both in healthy individuals and individuals with psychiatric disorders. In our recent publication in Molecular Psychiatry, we investigated the impact of an alteration in a gene, St8sia2, that plays important roles during early brain development. Alterations in this gene have been linked with schizophrenia, autism and bipolar disorder, and individuals with these disorders frequently present high aggressiveness. In addition, expression of this gene in the brain can be altered by stressful insults during very early life and development. Our study shows that genetic and environmental conditions linked to a reduction in the expression of this neuroplasticity gene during early life can lead to impaired fear learning and associated pathological aggression. We could further reveal that deficits in St8sia2 expression lead to a dysfunction in a receptor in the amygdala (a brain region critically involved in emotionality and fear learning), the GluN2B subunit of NMDA Receptors. This allowed us to target this receptor with D-cycloserine, a drug that facilitates NMDA receptor function. This treatment, when given acutely, ameliorated the capacity to learn from adversity and reduced individuals’ aggressiveness.  (more…)
Alzheimer's - Dementia, Author Interviews, Genetic Research, Mental Health Research / 31.07.2018

MedicalResearch.com Interview with: The Jackson LaboratoryCatherine Kaczorowski, Ph.D. Associate Professor and Evnin Family Chair in Alzheimer's Research Kristen O’Connell, Ph.D., Assistant Professor Amy Dunn, Ph.D., Postdoctoral Associate The Jackson Laboratory MedicalResearch.com: What is the background for this study? What are the main findings?  Dr. Amy Dunn: “Alzheimer's disease is complex, with both genetic and environmental factors determining symptom onset and disease progression, though our current understanding of how genetic and environmental factors interact to influence disease risk is incomplete. We recently developed a panel of genetically diverse mice carrying human familial AD mutations (AD-BXDs) that better model human AD in order to determine how genetics and diet interact to modify disease onset and severity. We fed a high fat diet to AD-BXDs and monitored metabolic and cognitive function over the duration of the HFD feeding.  We observed accelerated working memory decline in most of the AD-BXD mouse strains, however, the impact of high fat diet on memory was dependent on individual genetic differences across the panel, with some AD-BXD strains maintaining cognitive function on high fat diet (resilient strains). Our data suggest that diet and genetic background interact to mediate vulnerability to AD pathogenesis, and that metabolic factors (e.g. obesity, body composition) that may contribute to cognitive decline differentially in normal aging versus AD. “ (more…)
Author Interviews, Duke, Genetic Research, Neurology, Pediatrics / 30.07.2018

MedicalResearch.com Interview with:  Paul C Marcogliese, Ph.D. Postdoctoral Associate, Laboratory of Dr. Hugo Bellen Department of Molecular and Human Genetics Baylor College of Medicine Houston, Texas 77030 Loren D. Pena, MD PhD Division of Human Genetics Cincinnati Children's Hospital Medical Center Department of Pediatrics University of Cincinnati Cincinnati, OH 45229 MedicalResearch.com: What is the background for this study? What are the main findings? Response: The Undiagnosed Diseases Network (UDN) is a multi-site collaboration across the US that seeks to help diagnose patients with rare disorders that are ill-defined. Dr. Loren D.M. Pena and Dr. Vandana Shashi at the Duke-Columbia clinical site of the UDN had seen a patient with a severe neurological disorder. While the patient had no symptoms at birth, the patient began falling at about 3 years of age, eventually losing motor coordination and developing seizures. In the interim, the regression has progressed to a severely debilitating state. Re-analysis of the participant’s exome data by our site bioinformatician at Columbia (Nicholas Stong) in Dr. David Goldstein’s laboratory revealed a truncating variant in the single exon gene IRF2BPL that could be the candidate disease-causing gene. The UDN clinicians at Duke then contacted the UDN Model Organism Screening Center (MOSC) led by Dr. Hugo Bellen at Baylor College of Medicine and the Howard Hughes Medical Institute for functional analysis. In parallel, four more patients were found with truncating mutations causing a similar disorder though the UDN and GeneMatcher.org. Additionally, two patients with missense variants in IRF2BPL were identified that displayed seizures and some developmental delay or autism spectrum disorder but no motor regression. Work in MOSC by Dr. Paul Marcogliese using fruit flies revealed that the IRF2BPL truncating variants are severe loss of function mutations and one of the missense variants was a partial loss of function. Additionally, it was found that the fruit fly IRF2BPL gene, called pits, is expressed in the neurons of the adult fly brain. Lowering the levels of pits by about 50% in fly neurons leads to progressive behavioural abnormalities and neurodegeneration. By combining the human genetics, bioinformatics and model organism data, IRF2BPL was found to be a novel disease-causing gene in humans. (more…)
Author Interviews, Genetic Research, Osteoporosis, PLoS, Stanford / 29.07.2018

MedicalResearch.com Interview with: Stuart Kim PhD Professor of Developmental Biology, Emeritus Bio-X Affiliated Faculty James H. Clark Center Stanford University  MedicalResearch.com: What is the background for this study? What are the main findings? Response: Osteoporosis is caused by a reduction in bone mass, and leads to a high incidence of bone fracture because the weakened bone is less able to withstand the stress of slips and falls. Osteoporosis affects millions of elderly, is responsible for as many as 50% of fractures in women and 25% of fractures in men over the age of 50, and accounts for $19 billion in annual health care costs in the US. Identification of people with an increased genetic risk for osteoporosis could reduce the incidence of bone fracture. Low BMD is also a risk factor for stress fractures. For athletes and military personnel undergoing harsh rigors of training, stress fractures are common injuries that limit playing time, military effectiveness and competitive success. Using data from UK Biobank, a genome-wide association study identified 1,362 independent SNPs that clustered into 899 loci of which 613 are new. These data were used to train a genetic algorithm using 22,886 SNPs as well as height, age, weight and sex as predictors. Individuals with low genetic scores (about 2% of those tested) showed a 17-fold increase in risk for osteoporosis and about a 2-fold increase in risk of fractures. (more…)
Alzheimer's - Dementia, Author Interviews, Genetic Research / 27.07.2018

MedicalResearch.com Interview with: Gregory Carter, PhD Associate Professor at The Jackson Laboratory MedicalResearch.com: What is the background for this study? What are the main findings? Response: Animal models for late-onset Alzheimer’s disease (LOAD) will be of significant benefit for the discovery and characterization of links between specific genetic factors and the molecular pathways associated with the disease. To date, most animal models have been based on rare, early-onset Alzheimer’s disease genes that incompletely capture the complexity of LOAD and have not translated well to therapies. Therefore, developing and utilizing animal models based on genes hypothesized to play a role in LOAD will provide new insights into its basic biological mechanisms.  (more…)
Alzheimer's - Dementia, Author Interviews, Genetic Research / 25.07.2018

MedicalResearch.com Interview with: Gregory Carter, PhD Associate Professor at The Jackson Laboratory MedicalResearch.com: What is the background for this study? What are the main findings? Response: Late-onset Alzheimer’s disease (LOAD) is the most common form of the disease and the major cause of dementia in the aging population. To date, the complex genetic architecture of LOAD has hampered both our ability to predict disease outcome and to establish research models that effectively replicate human disease pathology. Therefore, most basic research into Alzheimer’s disease has focused on early-onset forms caused by mutations in specific genes, which has provided key biological insights but to date has not translated to effective disease preventatives or cures. Our study analyzes both common and rare human genetic variants to identify those significantly associated with .late-onset Alzheimer’s disease, beginning with a large data set from the Alzheimer’s Disease Sequencing Project. We also analyzed RNA sequencing data from post-mortem human and mouse model samples to prioritize candidate genes. We found a new common coding variant significantly associated with disease, in addition to those in genes previously associated with late-onset Alzheimer’s disease. We also found five candidate genes conferring a significant rare variant burden.  (more…)
Author Interviews, Brigham & Women's - Harvard, Genetic Research, Microbiome / 24.07.2018

MedicalResearch.com Interview with: A. Sloan Devlin, PhD Assistant Professor Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School MedicalResearch.com: What is the background for this study? Response: It is known that the microbiome, the collection of bacteria that live in and on our bodies, influences the development of metabolic diseases including diabetes and obesity. The ways in which the microbiome affects host metabolism, however, are poorly understood. One reason for this lack of understanding is because the gastrointestinal tract contains hundreds of species of bacteria producing many different kinds of metabolites. Untangling the effects of these bacteria and the molecules they make is a significant challenge. In this study, we decided to concentrate on a group of metabolites found in the human gut called bile acids. When we eat a meal, these compounds are released into the gastrointestinal tract where they act as detergents that aid in digestion. Once these molecules reach the lower gastrointestinal tract, the gut bacteria residing there chemically modify these compounds, producing a pool of over 50 different bile acids total. Imbalances in this bile acid pool are thought to influence the progression of diet-induced obesity. However, it is unclear which specific bile acids are responsible for either beneficial or detrimental effects on host metabolism. We set out to address this question by first identifying a selective type of bacterial enzyme called a bile salt hydrolase, then by genetically deleting this enzyme from a common gut bacterium and investigating how this change affected host metabolism. (more…)
Author Interviews, Biomarkers, Cancer Research, Genetic Research, Prostate Cancer / 23.07.2018

MedicalResearch.com Interview with: Gong-Hong Wei, PhD Professor, Academy Research Fellow Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu University of Oulu, Finland MedicalResearch.com: What is the background for this study? What are the main findings? Response: Prostate cancer is the second most common cancer and the fifth leading cause of cancer-related death in men, with more than 1,100,000 new cases diagnosed and 300,000 deaths yearly around the globe. Among the risk factors for prostate cancer development, the genetic heritability of prostate cancer has been reported near 60%. Over the past decade, genome-wide association studies have identified more than 150 independent single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, we know very little mechanisms accounting for these associations. SNP rs11672691 at the chromosome 19q13 locus has been found not only associated with prostate cancer risk but also aggressiveness, a form of prostate cancer often with worse prognosis and eventually progression to incurable stage. However, how this genomic variant accounts for prostate cancer severity remains totally unknown. Here we found the association of rs11672691 with additional clinical features of aggressive prostate cancer in an independent cohort of patients with prostate cancer, and discovered a rs11672691-mediated gene regulatory network including several novel genes, HOXA2, CEACAM21 and PCAT19, likely causing prostate cancer progression to incurable stage. In particular, the risk G (guanine) allele of rs11672691 was associated with higher RNA levels of PCAT19 and CEACAM21, and poor prognosis in prostate cancer patients. Rs11672691 G allele enhances chromatin binding of HOXA2 to regulate the expression of CEACAM21 and PCAT19. Using the CRISPR-Cas9 genome editing method, we revealed that rs11672691 genotype directly influence HOXA2 in regulating PCAT19 and CEACAM21 expression, and prostate cancer cellular phenotype. (more…)
Author Interviews, Breast Cancer, Cancer Research, Genetic Research, Nature / 23.07.2018

MedicalResearch.com Interview with: Luca Magnani, Ph.D CRUK Fellow/Senior Research Fellow Department of Surgery and Cancer Imperial Centre for Translational and Experimental Medicine Room 140 1st floor ICTEM building Imperial College Hammersmith London, UK MedicalResearch.com: What is the background for this study? Would you briefly explain what is meant by the Yin Yang1 molecule? Response: This study was designed to investigate the evidence of non-genetic mechanisms that could contribute to breast cancer biology. Specifically, we developed a map of regulatory regions from luminal breast cancer patients. Regulatory regions are pieces of DNA that are not transcribed into protein-coding genes but they provide information about where and how much each gene should be activated. It is worth highlighting that cancer is not only the consequence of gene mutations but also the result of the wrong genes expressed at the wrong time.  To catalogue regulatory regions we looked for specific modifications that are strongly associated with their activity (epigenetic modifications). Doing so we developed the first extensive catalogue  of non-coding DNA regions that might play an essential role in regulating how breast cancer cell behaves. Regulatory regions do their job by interacting with specific molecules called transcription factors. These molecules can read the information stored in these regulatory regions and contribute to regulate gene expression. Yin Yang 1 is one of such molecules and was previously thought as a ambiguous player capable of activating or repressing gene activity.   (more…)
Author Interviews, Genetic Research, Weight Research / 21.07.2018

MedicalResearch.com Interview with: “In-N-Out meal #1” by Chris Makarsky is licensed under CC BY 2.0Dr. Christina Holzapfel PhD Junior Research Group Leader at Institute for Nutritional Medicine Technical University of Munich MedicalResearch.com: What is the background for this study? What are the main findings? Response: A lot of articles about genetic factors and nutritional intake have been published in the last years. Findings are inconsistent and it is not clear, whether genetic variants, especially associated with body mass index, are associated with nutritional intake. Therefore we performed a systematic literature search in order to get an overview about the association between single nucleotide polymorphisms and total energy, carbohydrate and fat intakes. We identified about specific search terms and their combinations more than 10,000 articles. Of these, 39 articles were identified for a relationship between genetic factors and total energy, carbohydrate, or fat consumption. In all studies, we most frequently encountered the fat mass and obesity (FTO) associated gene as well as the melanocortin 4 receptor gene (MC4R). There are indications of a relationship between these two genes and total energy intake. However, the evaluation of the studies did not provide a uniform picture. There is only limited evidence for the relationship between the FTO gene and low energy intake as well as between the MC4R gene and increased energy intake. (more…)
Author Interviews, Biomarkers, Brain Cancer - Brain Tumors, Cancer Research, Genetic Research / 21.07.2018

MedicalResearch.com Interview with: Arnab Chakravarti MD Professor and Chair of Radiation Oncology Arthur G. James Cancer Hospital and Richard J. Solove Research Institute The Ohio State University Comprehensive Cancer Center MedicalResearch.com: What is the background for this study?   Response: Historically, the treatment for grade two gliomas has been a black box without really a standard-of-care therapy. In the past, it was really dealer’s choice, where it was based upon physician and patient preference. Either radiation alone, radiation plus chemotherapy, or chemotherapy alone, there wasn't really any data to guide therapeutic decision-making. Then about three years ago the landmark study RTOG 9802 was published, which demonstrated a survival benefit with the addition of chemotherapy to radiation versus radiation alone. That became the standard of care for the treatment of grade two gliomas. One of the tricky issues with regards to these tumors is that there's a wide range of outcomes. There are patients that succumb to disease within months, others that live decades. It's very important to personalize care for the individual patient and that's why biomarkers, prognostic and predictive biomarkers are so important. The 9802 study showed us for the general population of patients that the addition of chemotherapy to radiation improved outcomes versus radiation alone. The patient population that was selected for our study were the high-risk low-grade glioma patients. Patients who are generally over the age of 40, tumor sizes that exceeded 6 cm in terms of maximum dimension, tumors that invaded the corpus callosum, astrocytic histology of patients with neurological symptoms. These are typically the patients that were included in the study. Really the main objective of this study was to determine the efficacy of treatment compared to historical controls. (more…)
Addiction, Author Interviews, Cocaine, Genetic Research / 17.07.2018

MedicalResearch.com Interview with: “Cocaine concealed in washing powder” by The National Crime Agency is licensed under CC BY 2.0 MedicalResearch.com: What is the background for this study? What are the main findings?  Response: Drug addiction is a chronically relapsing neuropsychiatric disease that affects 15.5 million people in Europe at a cost of 65.7 billion euros per year. All addictive drugs have in common to cause an artificial increase in the release of a neurotransmitter called dopamine, a very basic effect that can be found in all studied animal species from the fly to the man. The release of dopamine takes place in a region of the brain called the ventral striatum, or Nucleus Accumbens (NAc), which is directly involved in reward and reinforcement processes. An excess of dopamine release by the dopaminergic neurons projecting to the NAc from the Ventral Tegmental Area (VTA) triggers long-term changes in the brain, which can lead to addiction. Cocaine is a prototypical addictive drug, since it is heavely abused in Western societies and extensively studied in animal models as well as humans. We discovered that mice lacking the Maged1 gene showed a marked decrease in cocaine-elicited release of dopamine in the NAc and were entirely unresponsive to cocaine at behavioral level. In fact, they did not show any behavioral reaction normally observed after cocaine treatment, such as cocaine-elicited hyperlocomotion, sensitization (an increased effect of the drug following repeated administrations) or addictive behaviors, such as increased preference for places where the animal expects to obtain a cocaine reward or cocaine self-administration. In a subsequent set of experiments, the researchers tried to identify what brain regions are responsible for Maged1 influence on cocaine effects and found that Maged1 expression is specifically required in the prefrontal cortex, and not in the neurons producing dopamine in the VTA, for the development of cocaine sensitization and dopamine release.  (more…)
Aging, Author Interviews, Genetic Research / 09.07.2018

MedicalResearch.com Interview with: “siblings” by Katina Rogers is licensed under CC BY 2.0Stacy L. Andersen, PhD Assistant Professor of Medicine Project Manager New England Centenarian Study Long Life Family Study Boston University School of Medicine Boston Medical Center Boston, MA 02118 MedicalResearch.com: What is the background for this study? Response: Exceptional longevity appears to run in families. Previous studies have found that people who have siblings who live into their 90s or who reach 100 years of age have a greater chance themselves of living longer than the general population. Yet it is supercentenarians, those who reach the age of 110 years, who represent the true extreme of the human lifespan.  We wanted to determine whether the parents and siblings of supercentenarians were more likely to reach very old ages than family members of younger centenarians. We collected family tree information for 29 participants of the New England Centenarian Study aged 110-119 years. Proof of age documents and familial reconstruction methods were used to validate ages and dates of birth and death of the supercentenarian as well as his or her parents and siblings. Mean age at death was compared to birth year and sex-specific US and Swedish cohort life table estimates conditional on survival to age 20 for siblings to omit deaths due to nonheritable factors such as infectious disease or accidents and survival to age 50 (the approximate age at which women are no longer able to reproduce) for parents.  (more…)
Alcohol, Author Interviews, Endocrinology, Genetic Research / 28.06.2018

MedicalResearch.com Interview with: Toni Pak, Ph.D. Professor and Department Chair Department of Cell and Molecular Physiology Loyola University Chicago Maywood, Ill  MedicalResearch.com: What is the background for this study? Response: We have known for many years that drinking alcohol during pregnancy can lead to developmental delays and birth defects in offspring. However, our data demonstrate that drinking large quantities of alcohol in a “binge” fashion before pregnancy can also impact future offspring and importantly, this is true for drinking behaviors of both parents, not just the mother. Our previous data support the idea that alcohol is affecting the parental sperm and eggs to induce these modifications in the offspring, but this most recent work shows the extent of those effects on social behavior, pubertal maturation, and stress hormones as the offspring grow to adulthood. This means that the risky behaviors of young people, such as the extremely popular practice of binge drinking, have potentially far-reaching consequences for generations to come. (more…)